H-NMR Spektroskopie: Einführung

C-NMR:

H-NMR:

H-NMR Spektroskopie: Theorie

Genauso wie ¹³C haben auch Wasserstoffatome (¹H) einen Kernspin und können somit in einem Kernspinresonanzspektrometer (NMR-Spektrometer) detektiert werden.

Wasserstoff Atome können zwei Spinzustände annehmen:

¹H-NMR-Spektren sind sehr spezifisch für verschiedene Moleküle. Sie können darum dazu beitragen, von einem unbekannten Molekül die Struktur herauszufinden.

Schauen wir uns an, welche Eigenschaften von Molekülen die 1H-NMR-Spektren beeinflussen.

Die chemische Umgebung

Wie ein Spektrogramm eines bestimmten Moleküls aussieht, hängt stark von der chemischen Umgebung, also von der Nachbarschaft der einzelnen H-Atome in einem Molekül ab.

H-Atene mit gleicher chamischer Umgebung liefern dasselle Signal

Anders sieht das Spektrum bei Methanol aus.

KS Im Lee

Martin Lussi, 27.03.2018, FS 2018

Erkenntnis:

Chemische Verschiebung

Wo auf der x-Achse des ¹H-NMR-Spektrums ein Signal erscheint, hängt ebenfalls von der chemischen Umgebung eines H-Atoms ab. Die x-Achse in ppm (oft mit "δ" abgekürzt) ist ein Mass dafür, wie stark die chemische Verschiebung ist.

Es gelten folgende Daumenregeln:

 Ein H-Atom erfährt eine stärkere chemische Verschiebung (d.h. das Signal erscheint weiter links), wenn es einem elektronegativen Atom benachbart ist.

Bsp:

- Die Verschiebung ist umso stärker, je elektronegativer das benachbarte Atom ist

Bsp:

Die Verschiebung ist umso stärker, je näher das elektronegative Atom benachbart ist.

Bsp:

Die Verschiebung ist umso stärker, je mehr elektronegative Atome benachbart sind.

Bsp:

Elektronegative Atome können z.B. sein N, O, F, Cl, Br, I, etc..

Tabellen Verteilen!

Aufspaltung

H-Atome werden nicht nur durch elektronegative Nachbar-Atome beeinflusst, sondern auch durch andere H-Atome. Benachbarte H-Atome, welche sich in einer chemisch verschiedenen Umgebung befinden, ändern das Magnetfeld für ein gegebenes H-Atom. Diese Änderung kann verstärkend oder abschwächend sein und ist abhängig von dem Spin der benachbarten H-Atome. Deshalb spaltet sich das Signal für das betrachtete H-Atom auf.

Betrachten wir uns zum Beispiel folgendes Molekül:

Betrachten wir zunächst das Signal, welches uns H2 und H3 liefern wird:

- H² und H³ haben die gleiche chemische Umgebung (weil sie an dasselbe C-Atom gebunden sind) und üben deshalb keinen Einfluss aufeinander aus.

-Sie spüren jedoch das chemisch verschiedene H1

-H1 kann zwei Spinzustände haben:

-Ein Spinzustand verstärkt das magnetische Feld für H² und H³ der andere schwächt es ab. Das Signal wird also aufgespalten und sieht dann so aus:

Welches Signal wird uns wohl H1 liefern?

H¹ spürt eine Beeinflussung seines Magnetfeldes von H² und H³ gleichzeitig

- H² und H³ können folgende Spinzustände haben:

- Insgesamt wird das Magnetfeld von H1 also von 3 möglichen Spinzuständen beeinflusst (Nicht vier, da der zweite Spinzustand identisch zum dritten ist). Das Signal sieht dann so aus:

Allgemein gilt:

Aufspaltung	Anzahl gebundener H-Atome am benachbarten C- Atom	
Keine Aufspaltung (Singlett)	Kein H-Atom	
Zwei Linien (Dublett)	Ein H-Atom	
Drei Linien (Triplett)	Zwei H-Atome	
Vier Linien (Quartett)	Drei H-Atome	

Hinweis: Die Aufspaltung funktioniert nicht, wenn zwischen den H-Atome mehr als zwei C-Atome oder ein Sauerstoff- oder Stickstoff-Atom dazwischen ist!

(Byc H3) keine Anfspelling

Wie sieht dann wohl ein Quartett aus?

Mögliche Spinzustände der drei benachbarten H-Atome:

Mognicine Spirizustande der dier benachbanten 1-xionie.

7h 4r 3×
3h 2r 4h 2r 3×
3k 4h 2r 3×
3k 4h 2r 3×
3k 4h 2r 3×
3k 4h 2r 3×

Manchmal ist in einem H-NMR-Spektrum angegeben, wie gross die Fläche unter einem Signal ist, wie

in folgendem Spektrum von Bromethan zu sehen:

Die Zahl über dem Signal gibt an, wie gross die Fläche unter der Kurve ist.

Die Fläche unter der Kurve entspricht der Anzahl H-Atome, welche das Signal verursachen.

H-NMR Spektroskopie: Arbeitsblatt

Das Wichtigste der Theorie:

- Anzahl der Signale => Anzahl H-Atome mit unterschiedlicher chemischer Umgebung
- Aufspaltung der Signale => Anzahl benachbarter H-Atome
- Chemische Verschiebung => Elektronegative Atome als Bindungspartner oder in unmittelbarer N\u00e4he
- 1) In gleicher Nähe zu einem Wasserstoff Atom befinden sich jeweils folgende Atome:

 Sauerstoff, Iod, Brom, Stickstoff, Fluor, Chlor. Zeichnen Sie ein, wo das Signal des H-Atoms in
 einem NMR-Spektrum ungefähr erscheinen wird.

2) Mit welcher chemischen Verschiebung und Form erwarten Sie die Signale der folgenden gekennzeichneten H-Atome (H¹ bis H⁴)? Zeichnen Sie ein!

Erklären Sie in eigenen Worten die Aufspaltung der Signale im Spektrum von Bromethan.
 Zeichnen Sie dazu die verschiedenen Spineinstellungs-möglichkeiten auf.

2h: 1x => verusacht 1h 1r: 2x => Priplett cm CH3 2r: 1x

Chemische Verschiebung: CHz ist naher an Bran, deshalb ist die chemische Verschiebung greiser ("weiterrechts"

4) Zeichsten Sie ein H-NMR-Spektrum von Diethylether

(H3C O CH3)

(H2 - Gruppen: Anfspaltung in Triplett, weiter meg van O (H3C)

5) Sie wissen von einem Molekül lediglich die Summenformel C₄H₇CIO und bekommen folgendes Spektrum:

-2-

Um welches Molekül handelt es sich?

Martin Lussi, 27.03.2018, FS 2018

Summenformel: C₄H₉Cl

Dein Molekül:

Summenformel: C₄H₉Cl

Dein Molekül:

Summenformel: C₄H₉Cl

Dein Molekül:

H-NMR Spektroskopie: Lösungen Gruppenarbeit zu C₄H₉CI

0 ppm

1-Chlorbutan

Scanned with CamScanner

Synopsis

Thema: H-NMR

Klasse: SWP 12. Schuljahr

Datum: 27.03.2018

Operationalisierte Lernziele

- 1. Die SuS verstehen, dass Moleküle mit Wasserstoffatomen in einem Wasserstoff NMR-Spektrogramm spezifische Muster aufweisen
- 2. Die SuS kennen die Begriffe der chemischen Verschiebung sowie Dublett, Triplett und Quartett.
- 3. Die SuS können aus einfachen H-NMR Spektren auf die Struktur des Moleküls schliessen sowie von einem einfachen Molekül ein H-NMR Spektrum zeichnen

Did. Funktion	Sozial form	Interrighte Inhelt	Hilfsmittel	Bemerkungen	Zeit
Einstieg	Frontal	H-NMR Spektrum eines Naturstoffs Ukrahra Z	Beamer		3'
Input	Frontal	Theorie Einstieg	Skript, Visualizer		17'
Verarbeitung	EA	Arbeitsblatt inkl. Besprechung	Arbeitsblatt		20'
Ergebnis- sicherung	Frontal	Besprechung Arbeitsblatt			10'
/ertiefung	GA	Expertenrunde: H-NMR Spektren erstellen			20'
rgebnis- licherung	Frontal	Besprechen der Spektren			8'
	Frontal	extl Guzlet/Goplack			2'

Backup: