H-NMR Spektroskopie: Einführung

C-NMR:

H-NMR:

H-NMR Spektroskopie: Theorie

Genauso wie ${ }^{13} \mathrm{C}$ haben auch Wasserstoffatome (${ }^{(} \mathrm{H}$) einen Kernspin und können somit in einem Kernspinresonanzspektrometer (NMR-Spektrometer) detektiert werden.

Wasserstoff Atome können zwei Spinzustande annehmen:

'H-NMR-Spektren sind sehr spezifisch für verschiedene Moleküle. Sie können darum dazu beitragen, von einem unbekannten Molekül die Struktur herauszufinden.

Schauen wir uns an, welche Eigenschaften von Molekülen die ${ }^{1} \mathrm{H}$-NMR-Spektren beeinflussen.

Die chemische Umgebung

Wie ein Spektrogramm eines bestimmten Moleküls aussieht, hängt stark von der chemischen Umgebung, also von der Nachbarschaft der einzelnen H-Atome in einem Molekül ab.

Schauen wir uns das ${ }^{1} \mathrm{H}$-NMR-Spektrum von Aceton an:

Erkenntnis:
H-Atene mit glaider chemis sher Ilmgebung liefern dassele Signyl

Anders sieht das Spektrum bei Methanol aus.

Erkenntnis:

H-Akme mit untresshiedlicher chemisder Umabungy liefen watrshiedliche signale

Chemische Verschiebung

Wo auf der x -Achse des ${ }^{1} \mathrm{H}$-NMR-Spektrums ein Signal erscheint, hăngt ebenfalls von der chemischen Umgebung eines H -Atoms ab. Die x -Achse in ppm (oft mit „ $\mathrm{\delta}^{\prime}$ abgekürzt) ist ein Mass dafür, wie stark die chemische Verschiebung ist.

Es gelten folgende Daumenregeln:

- Ein H-Atom erfährt eine stärkere chemische Verschiebung (d.h. das Signal erscheint weiter links), wenn es einem elektronegativen Atom benachbart ist.

Bsp:

- Die Verschiebung ist umso stärker, je elektronegativer das benachbarte Atom ist

Bsp:

- Die Verschiebung ist umso stärker, je näher das elektronegative Atom benachbart ist.

Bsp:

- Die Verschiebung ist umso stärker, je mehr elektronegative Atome benachbart sind.

Elektronegative Atome können z.B. sein N, O, F, CI, Br, I, etc.. Tabelien verteilen.

Aufspaltung

H-Atome werden nicht nur durch elektronegative Nachbar-Atome beeinflusst, sondern auch durch andere H -Atome. Benachbarte H -Atome, welche sich in einer chemisch verschiedenen Umgebung befinden, ändern das Magnetfeld für ein gegebenes H-Atom. Diese Ånderung kann verstärkend oder abschwächend sein und ist abhängig von dem Spin der benachbarten H-Atome. Deshalb spaltet sich das Signal für das betrachtete H-Atom auf.

Betrachten wir uns zum Beispiel folgendes Molekül:

Betrachten wir zunächst das Signal, welches uns H^{2} und H^{3} liefern wird:

- H^{2} und H^{3} haben die gleiche chemische Umgebung (weil sie an dasselbe C-Atom gebunden sind) und üben deshalb keinen Einfluss aufeinander aus.
-Sie spüren jedoch das chemisch verschiedene H^{1}
$-\mathrm{H}^{1}$ kann zwei Spinzustände haben:

-Ein Spinzustand verstärkt das magnetische Feld für H^{2} und H^{3} der andere schwächt es ab. Das Signal wird also aufgespalten und sieht dann so aus:

Welches Signal wird uns wohl H^{1} liefern?

- H^{1} spürt eine Beeinflussung seines Magnetfeldes von H^{2} und H^{3} gleichzeitig
- H^{2} und H^{3} können folgende Spinzustände haben:

oder $\downarrow \uparrow$ oder

- Insgesamt wird das Magnetfeld von H^{1} also von 3 möglichen Spinzuständen beeinflusst (Nicht vier, da der zweite Spinzustand identisch zum dritten ist). Das Signal sieht dann so aus:

Allgemein gilt:

Aufspaltung	Anzahl gebundener H-Atome am benachbarten C- Atom
Keine Aufspaltung (Singlett)	Kein H-Atom
Zwei Linien (Dublett)	Ein H-Atom
Drei Linien (Triplett)	Zwei H-Atome
Vier Linien (Quartett)	Drei H-Atome

Hinweis: Die Aufspaltung funktioniert nicht, wenn zwischen den H-Atome mehr als zwei C-Atome oder ein Sauerstoff- oder Stickstoff-Atom dazwischen ist! v Andern!

 keine

Wie sieht dann wohl ein Quartett aus? Mögliche Spinzustănde der drei benachbarten H-Atome:

Manchmal ist in einem H-NMR-Spektrum angegeben, wie gross die Fläche unter einem Signal ist, wie in folgendem Spektrum von Bromethan zu sehen:

Die Zahl über dem Signal gibt an, wie gross die Fläche unter der Kurve ist.

Die Fläche unter der Kurve entspricht der Anzahl H-Atome, welche das Signal verursachen.

H-NMR Spektroskopie: Arbeitsblatt

Das Wichtigste der Theorie:

- Anzahl der Signale => Anzahl H-Atome mit unterschiedlicher chemischer Umgebung
- Aufspaltung der Signale => Anzahl benachbarter H-Atome
- Chemische Verschiebung => Elektronegative Atome als Bindungspartner oder in unmittelbarer Nâhe

1) In gleicher Nathe zu einem Wasserstoff Atom befinden sich jeweils folgende Atome:

Sauerstoff, lod, Brom, Stickstoff, Fluor, Chlor. Zeichnen Sie ein, wo das Signal des H-Atoms in

2) Mit welcher chemischen Verschiebung und Form erwarten Sie die Signale der folgenden gekennzeichneten H -Atome (H^{1} bis H^{4})? Zeichnen Sie ein!

3) Erklären Sie in eigenen Worten die Aufspaltung der Signale im Spektrum von Bromethan.

Zeichnen Sie dazu die verschiedenen Spineinstellungs-möglichkeiten auf.

Chemische Veshiebum: $C_{2} H_{2}$ ist naiher an Brom, deshalb ist die chemische Veschiebung grisur ("water celtit"
4) Zeichnen Sie ein H-NMR-Spektrum von Diethylether

 C $\mathrm{H}_{2}-G_{\text {rrpeen }}$: Antipalltung in Quartett, näker in O

5) Sie wissen von einem Molekül lediglich die Summenformel $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{ClO}$ und bekommen folgendes Spektrum:

Um welches Molekül handelt es sich?

Summenformel: $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$

Dein Molekül:

Summenformel: $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$

Dein Molekül:

Summenformel: $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$

Dein Molekül:

H-NMR Spektroskopie: Lösungen Gruppenarbeit zu $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$

(1)

2-Chlor-2-Methylpropan

1-Chlorbutan

2-Chlorbutan
(1) (2)

Operationalisierte Lernziele

1. Die SuS verstehen, dass Moleküle mit Wasserstoffatomen in einem Wasserstoff NMR-Spektrogramm spezifische Muster aufweisen
2. Die SuS kennen die Begriffe der chemischen Verschiebung sowie Dublett, Triplett und Quartett.
3. Die SuS können aus einfachen H-NMR Spektren auf die Struktur des Moleküls schliessen sowie von einem einfachen Molekül ein H-NMR Spektrum zeichnen

Did. Funktion	Sozialform	Unterrichts-Inhalt	Hilfsmittel	Bemerkungen	Zeit
Einstieg	Frontal	H-NMR Spektrum eines Naturstoffs unterchidedz C	Beamer		$3 '$
Input	Frontal	Theorie Einstieg	Skript, Visualizer		17'
Verarbeitung	EA	Arbeitsblatt inkl. Besprechung	Arbeitsblatt		20'
Ergebnissicherung	Frontal	Besprechung Arbeitsblatt			10'
Vertiefung	GA	Expertenrunde: H-NMR Spektren erstellen			20'
Ergebnis- Sicherung	Frontal	Besprechen der Spektren			8'
Abschluss	Frontal	estl Quzlet / Gcpilcck			2

Backup:

